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SUMMARY

The aim of this paper is a derivation of a new multidimensional high-resolution �nite volume evolution
Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional
Riemann problems in directions normal to cell interfaces the �nite volume evolution Galerkin schemes
are based on a genuinely multidimensional approach. The approximate solution at cell interfaces is com-
puted by means of an approximate evolution operator taking all of the in�nitely many bicharacteristics
explicitly into account. Integrals along the Mach cones are evaluated exactly or by means of numerical
quadratures. Second-order resolution is obtained with a conservative piecewise bilinear recovery and the
second-order midpoint rule for the time integration. A numerical experiment which illustrates the good
multidimensional approximation as well as higher-order resolution is presented. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the most commonly used methods for hyperbolic problems were �nite volume
methods which were based on a quasi-dimensional splitting using one-dimensional Riemann
solvers. However, in multiple dimensions, there is in general no longer a �nite number of
directions of information propagation. Actually, it turned out that in certain cases, e.g. when
waves are propagating in directions that are oblique with respect to the mesh, this approach
leads to structural de�ciencies and large errors in the solutions. Therefore, the emphasis has
been put on developing genuinely multidimensional methods. In the 80s Deconinck et al. [1]
presented the �uctuation splitting schemes. Each part of information, which is decomposed
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into a discrete number of simple waves, is distributed in �ow directions over the cell vertices.
In 1997, LeVeque presented the wave propagation algorithm for multidimensional systems
of conservation laws [3]. The scheme still works with a one-dimensional Riemann solver,
however, it approximates not only the �uxes in x and y directions to cell interfaces, but also
the cross-product �uxes. In the same time Fey developed the method of transport (MoT) for
the Euler equations [2]. Fey’s method is based on decomposing the Euler equations into a �nite
number of advection equations, and solving each of them separately by a multidimensional
scheme. Further, Noelle introduced in Reference [10] the simpli�ed version of MoT scheme
using the so-called interfaced centered evolution.
The basic idea of the evolution Galerkin scheme (EG), introduced by Morton, is that

transport quantities, which remain constant along the characteristic curves, are shifted and
then projected onto a �nite element space. It was Ostkamp [11] who �rst generalized EG
schemes for multidimensional systems. In Reference [4] we have improved stability as well
as accuracy of Ostkamp’s original �nite di�erence scheme. In References [5–7] new second-
order �nite di�erence EG schemes, as well as �nite volume EG schemes, respectively, were
derived and studied for the linear wave equation system.
The aim of this contribution is to present new multidimensional high-resolution �nite vol-

ume evolution Galerkin methods for systems of non-linear hyperbolic conservation laws. We
believe that the most satisfying methods for approximating evolutionary PDE’s are based on
approximating the corresponding evolutionary operator. In order to construct a genuinely mul-
tidimensional numerical scheme for hyperbolic conservation laws the exact integral equations
are approximated by the approximate evolution operator in such a way that all of the in-
�nitely many directions of propagation of bicharacteristics are explicitly taken into account.
The �nite volume evolution Galerkin methods are a genuine generalization of the original idea
of Godunov using an evolution operator for a system in multidimensions. They combine the
usually con�icting design objectives of using the conservation form and following the charac-
teristics, or bicharacteristics. Instead of solving one-dimensional Riemann problems in normal
directions to cell interfaces by some approximate Riemann solvers, we use a genuinely multi-
dimensional approach. The approximate solution at cell interfaces is computed by means of an
approximate evolution operator using bicharacteristics. This is a novel feature of our method.

2. EULER EQUATIONS AND THE EXACT INTEGRAL EQUATIONS

Consider the Euler equation system written in primitive variables

Vt +A1(V)Vx +A2(V)Vy=0; x=(x; y)T ∈R2 (1)

where

V :=



�
u
v
p


 ; A1 :=



u � 0 0
0 u 0 1=�
0 0 u 0
0 �p 0 u


 ; A2 :=



v 0 � 0
0 v 0 0
0 0 v 1=�
0 0 �p v




Here � denotes the density, u and v components of velocities, p pressure and � isentropic
exponent. To derive integral equations we linearize system (1) by freezing the Jacobi matrices
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at a suitable point P̃=(x̃; ỹ; t̃). Denote by Ṽ=(�̃; ũ; ṽ; p̃) the local variables at the point P̃
and by c̃ the local speed of sound there, i.e. c̃=

√
�p̃=�̃, where �=1:4 for dry air. Thus, the

linearized system (1) with frozen constant coe�cient has the form

Vt +A1(Ṽ)Vx +A2(Ṽ)Vy=0; x=(x; y)T ∈R2 (2)

The eigenvalues of the matrix pencil A(Ṽ)=A1(Ṽ)nx+A2(Ṽ)ny, where n= n(�)= (nx; ny)T =
(cos �; sin �)T ∈R2 are

�1 = ũ cos �+ ṽ sin �− c̃; �2 = �3 = ũ cos �+ ṽ sin �; �4 = ũ cos �+ ṽ sin �+ c̃ (3)

and the corresponding linearly independent right eigenvectors are

r1 =




−�̃=c̃
cos �
sin �
−�̃c̃


 ; r2 =



1
0
0
0


 ; r3 =




0
sin �

− cos �
0


 ; r4 =



�̃=c̃
cos �
sin �
�̃c̃




Let R(Ṽ) be the matrix of the right eigenvectors. The inverse of R(Ṽ) is

R−1(Ṽ)=
1
2




0 cos � sin � −1=(2�̃c̃)
1 0 0 −1=c̃2
0 sin � − cos � 0
0 cos � sin � 1=(2�̃c̃)




Multiplying system (2) by R−1(Ṽ) from the left we obtain the characteristic system

Wt + B1(Ṽ)Wx + B2(Ṽ)Wy=0

where

B1 =



ũ− c̃ cos � 0 − 1

2 c̃ sin � 0
0 ũ 0 0

−c̃ sin � 0 ũ c̃ sin �

0 0 1
2 c̃ sin � ũ+ c̃ cos �




B2 =



ṽ− c̃ sin � 0 1

2 c̃ cos � 0
0 ṽ 0 0

c̃ cos � 0 ṽ −c̃ cos �
0 0 − 1

2 c̃ cos � ṽ+ c̃ sin �




(4)

and the characteristic variables W are

W=



w1
w2
w3
w4


=R−1(Ṽ)V=




1
2 (−p=�̃c̃+ u cos �+ v sin �)

�− p=c̃2
u sin �− v cos �

1
2 (p=�̃c̃+ u cos �+ v sin �)


 (5)
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The quasi-diagonalized system of the linearized Euler equations has the following form:

Wt +



ũ− c̃ cos � 0 0 0

0 ũ 0 0
0 0 ũ 0
0 0 0 ũ+ c̃ cos �


Wx

+



ṽ− c̃ sin � 0 0 0

0 ṽ 0 0
0 0 ṽ 0
0 0 0 ṽ+ c̃ sin �


Wy=S (6)

with

S=



S1
S2
S3
S4


=




1
2 c̃(sin �@w3=@x − cos �@w3=@y)

0
c̃ sin �(@w1=@x − @w4=@x)− c̃ cos �(@w1=@y − @w4=@y)

1
2 c̃(− sin �@w3=@x + cos �@w3=@y)




In what follows we will work with the concept of bicharacteristics. The ‘th bicharacteristic
x‘ corresponding to the ‘th equation of the system (2) is de�ned by

dx‘
dt
= b‘ ‘(n) := (b1‘ ‘; b

2
‘ ‘)

T (7)

where B1 = (b1jk)16j; k64, B2 = (b
2
jk)16j; k64. The set of all bicharacteristics creates the so-called

Mach cone. We integrate the ‘th equation of system (2) from the apex P=(x; y; t+�t) down
to the footpoint Q‘(�). More precisely, the footpoints of the corresponding bicharacteristics
are

Q1(�) = (x − (ũ− c̃ cos �)�t; y − (ṽ− c̃ sin �)�t; t)
Q2 =Q3 = (x − ũ�t; y − ṽ�t; t)

Q4(�) = (x − (ũ+ c̃ cos �)�t; y − (ṽ+ c̃ sin �)�t; t)

Integration of system (6) along the bicharacteristics gives the relations for the characteristics
variables, which after the multiplication from the left by the matrix R yield the exact integral
equation. After some computation, see Reference [9], we get the exact integral equations for
the Euler equations. Note that due to a symmetry between the points Q1 and Q4 we can
express the following integral equations using only one of them

�(P) = �(Q2)− p(Q2)
c̃2

+
1
2�

∫ 2�

0

[
p(Q1)
c̃2

− �̃
c̃
u(Q1) cos �− �̃

c̃
v(Q1) sin �

]
d�
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− �̃
c̃
1
2�

∫ 2�

0

∫ t+�t

t
S(x − (ũ − cn(�))(t +�t − t̃); t̃; �) dt̃ d�; (8)

u(P) =
1
2�

∫ 2�

0

[
−p(Q1)

�̃c̃
cos �+ u(Q1) cos2 �+ v(Q1) sin � cos �

]
d�

+
1
2�

∫ 2�

0

∫ t+�t

t
cos � S(x − (ũ − cn(�))(t +�t − t̃); t̃; �) dt̃ d�

+
1
2
u(Q2)− 1

2�̃

∫ t+�t

t
px(Q2(t̃)) dt̃; (9)

v(P) =
1
2�

∫ 2�

0

[
−p(Q1)

�̃c̃
sin �+ u(Q1) cos � sin �+ v(Q1) sin

2 �
]
d�

+
1
2�

∫ 2�

0

∫ t+�t

t
sin �S(x − (ũ − cn(�))(t +�t − t̃); t̃; �) dt̃ d�

+
1
2
v(Q2)− 1

2�̃

∫ t+�t

t
py(Q2(t̃)) dt̃; (10)

p(P) =
1
2�

∫ 2�

0
[p(Q1)− �̃c̃u(Q1) cos �− �̃c̃v(Q1) sin �] d�

−�̃c̃ 1
2�

∫ 2�

0

∫ t+�t

t
S(x − (ũ − cn(�))(t +�t − t̃); t̃; �) dt̃ d� (11)

where (x− (ũ− c̃n(�))(t+�t− t̃))= (x− (ũ− c̃ cos �)(t+�t− t̃); y− (ṽ− c̃ sin �)(t+�t− t̃));
and the so-called source term S is given in the following form:

S(x; t; �) := c̃[ux(x; t; �) sin
2 �− (uy(x; t; �) + vx(x; t; �)) sin � cos �+ vy(x; t; �) cos2 �]

3. APPROXIMATE EVOLUTION OPERATOR

Analogously as for the wave equation system in Reference [4] the integrals of the source term
with respect to time will be approximated by the rectangle rule. Therefore, we would need to
evaluate derivatives of the velocity components at time t. However, we found in Reference
[4, Lemma 2.1], that the integrals of the source S can be simpli�ed through integration by
parts, which yields

�t
∫ 2�

0
S(t; �) d�=

∫ 2�

0
[uQ1 cos �+ vQ1 sin �] d� (12)

Analogous relations hold for the S sin(�) and S cos(�) terms. The integrals in (9) and (10)
involving px and py need to be replaced by integrals over the cone mantle. This is done by
using the Gauss theorem, see Reference [4]. In such a way we have generated an approximate
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evolution operator

�(P) = �(Q2)− p(Q2)
c̃2

+
1
2�

∫ 2�

0

p(Q1)
c̃2

− 2 �̃
c̃
u(Q1) cos �

− 2 �̃
c̃
v(Q1) sin � d�+O(�t2) (13)

u(P) =
1
2
u(Q2) +

1
2�

∫ 2�

0
− 2
�̃c̃
p(Q1) cos �+ u(Q1)(3 cos2 �− 1)

+3v(Q1) sin � cos � d�+O(�t2) (14)

v(P) =
1
2
v(Q2) +

1
2�

∫ 2�

0
− 2
�̃c̃
p(Q1) sin �+ 3u(Q1) sin � cos �

+ v(Q1)(3 sin
2 �− 1) d�+O(�t2) (15)

p(P) =
1
2�

∫ 2�

0
p(Q1)− 2�̃c̃u(Q1) cos �− 2�̃c̃v(Q1) sin � d�+O(�t2) (16)

where Q1 = (x−�t(ũ− c̃ cos �); y−�t(ṽ− c̃ sin �); t), Q2 = (x−�tũ; y−�tṽ; t), and P=(x; y;
t +�t).

4. FINITE VOLUME EVOLUTION GALERKIN METHOD

In order to derive the �nite volume EG schemes let us consider the Euler equations in the
conservation form:

Ut + F1(U)x + F2(U)y=0 (17)

where the vector of conservative variables and the �uxes are

U :=



�
�u
�v
e


 ; F1(U) :=




�u

�u2 + p
�uv

(e+ p)u


 ; F2(U) :=




�v
�uv

�v2 + p
(e+ p)v


 :

Here e stands for the total energy, i.e. e=p=(�− 1) + �(u2 + v2)=2.
The �nite volume EG methods works with the above conservation form of the Euler equa-

tions. However, instead of computing one-dimensional Riemann problems in the normal di-
rection to cell interfaces by some approximate Riemann solver, we use multidimensional
approach. The approximate solution at cell interfaces is computed by means of the approxi-
mate evolution operator using bicharacteristics, which works with the primitive variables, see
(13)–(16).
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If no recovery is used then the whole method is of �rst order. In this case the �nite volume
evolution Galerkin scheme reads

Un+1 =Un − �t
h

2∑
k=1
�xkFk(U

∗) (18)

Fk(U∗) =
1
h

∫ h

0
Fk(E�t=2Vn) d‘ (19)

However, the most important advantage of the �nite volume formulation is that even a �rst-
order accurate approximation E� to the exact integral Equations (8)–(11) yields an overall
second-order update from Un to Un+1. A second-order scheme is obtained by a conservative
discontinuous bilinear recovery Rh using vertex values, and by the midpoint rule for time
integration. Thus the �uxes on cell interface are computed as

Fk(U∗)=
1
h

∫ h

0
Fk(E�t=2RhVn) d‘ (20)

We have applied the above FVEG methods very successfully to linear systems, e.g. the
wave equation system, the Maxwell equations. In References [5, 6] we presented several results
of numerical experiments and showed that the above approach led to relatively very accurate
schemes. For example, in comparison with the Lax–Wendro� scheme (rotated-Richtmyer ver-
sion) the second-order FVEG1 method is 7 times more accurate, see Reference [6]. For linear
problems the EG-methods capture multidimensional e�ects like rotational symmetry, circular
shocks and preservation of vorticity very well, see References [4–6].
Now, in order to compute non-linear �uxes on cell interfaces by means of the approximate

evolution operator we need to de�ne the local velocities of the �ow (ũ; ṽ) as well as the
local speed of sound c̃. Therefore to construct local Mach cones it is suitable to put predicted
points P̃ on cell boundaries, e.g. at vertices or at midpoints of the edges. It can be shown, see
Reference [9], that taking t̃= tn a linearization error is of order O(�t), while t̃= tn+�t=2 leads
to the second-order linearization error O(�t2). Now being at time tn we have no information
about the solution at time tn+�t=2. Therefore, a predictor step is needed to compute solution
at tn + �t=2. In our computations we have used the Lax–Friedrichs or the Osher–Solomon
method to compute this auxiliary information.

5. NUMERICAL RESULTS

Consider the well-known Sod-2d test problem with the initial data

�=1; u=0; v=0; p=1; ‖x‖¡ 0:4

�=0:125; u=0; v=0; p=0:1; else:

This initial-value problem may be considered as a spherical explosion problem. The compu-
tational domain is a square [−1; 1]× [−1; 1]. The mesh is quadrilateral and initial data are
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Figure 1. Cylindrical explosion, density distribution at T =0:2 on a 200× 200 mesh.

implemented by cutting the initial discontinuity and assigning it by modi�ed area-weighted
values according to the corresponding cell. As pointed out by Toro in Reference [12] this
avoids the formation of small amplitude waves created at early times by staircase con�g-
uration of the data. We set the CFL number to 0.55. Note that the approximate evolution
operator (13)–(16) leads to the FVEG scheme, which is not stable up to CFL=1, but in
Reference [8] a new FVEG scheme is derived, which is stable up to CFL=1.
Figure 1 shows the density distribution as a function of x and y at time T =0:2. The solution

exhibits a circular shock travelling away from the centre, a circular contact discontinuity
travelling in the same direction and a circular rarefaction wave travelling towards the origin
at (0; 0). In Figure 2 the isolines of density, x-velocity, and pressure are depicted.
In order to get more information on the exact solution we solved the one-dimensional non-

homogeneous cylindrically symmetric Euler equations using the �nite volume method of Roe
on a �ne mesh. Figure 3 shows the comparison between the ‘exact’ solution obtained by
the one-dimensional FVM and the �rst as well as the second-order FVEG methods. We can
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Figure 2. Isolines of the solution obtained by the FVEG scheme on a 400× 400 mesh.

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2
First and second order FVEG method vs."exact" radial 1d solution

rho _1st FVEG _ 50x50 
rho _ 2nd FVEG _ 50x50  
rho _1D _ 666x666     

Figure 3. Comparison between the one-dimensional cylindrically symmetric solution
and �rst as well assecond-order FVEG methods.

notice that the second-order method resolves discontinuities more sharply and approximates
the maxima of the solution more accurately.
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